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Abstract 

An exact expression is derived for the conditional 
probability density function of a three-phase invariant 
and the general result is applied to the space group 
P 1. The expression for the conditional density is given 
in terms of a sixfold Fourier series. A straightforward 
numerical evaluation of this series, without further 
analysis, is extremely time consuming. Much of the 
present paper is therefore devoted to an exposition 
of symmetries hidden in the various summations. The 
computational effort required for the evaluation of 
the above expression is thereby reduced to manage- 
able proportions in a number of interesting cases. 
Results of numerical computations of the exact condi- 
tional density are given in the second paper in this 
series. It is also shown that the exact expression for 
the conditional probability reduces to that given by 
Cochran [Acta Cryst. (1955), 8, 473-478]. 

Introduction 

Current approaches to phase determination by direct 
methods are based on the use of linear combinations 
of phases invariant under a shift of the origin of the 
unit cell. Such combinations are generally termed 
structure invariants (Hauptman & Karle, 1953). Of 
these, one of the most extensively used is the so-called 
three-phase structure invariant associated with the 
product of the three normalized structure factors Eh, 
E k and E_h_k, i.e. 

-" ~0h "t- ~)k'~- ~0-h- k. (1) 

In order to use the three-phase invariant for structure 
determination one needs to know the conditional 
probability density function (c.p.d.f.) of qb, where the 

conditioning is on the values [Eh[, tEd and [E-h--k[- 
An approximate form of this c.p.d.f., based on the 
central limit theorem, was first derived by Cochran 
(1955). Corrections to this result were subsequently 
calculated by a number of investigators in terms of 
Gram-Charlier, Edgeworth, or exponentiated series 
[e.g. Naya, Nitta & Oda (1965); Hauptman (1971); 
Karle (1972); Karle & Gilardi (1973); Giacovazzo 
(1974); Peschar & Schenk (1986); a rich source of 
references is the book by Giacovazzo (1980)]. As in 
the above studies we shall assume that the primitive 
random variables of the problem are the atomic co- 
ordinates, which vary independently and uniformly 
over the (0, 1) range. However, none of the approxi- 
mate c.p.d.f.'s have been compared with exact results 
to assess their accuracy. Such an assessment is the 
motivation for the present study. 

We have recently developed methods, not involving 
the approximations based on the central limit 
theorem, for calculating exact representations of 
p.d.f.'s useful in crystallographic applications (e.g. 
Shmueli, Weiss, Kiefer & Wilsop, 1984; Shmueli & 
Weiss, 1985, 1986). Some of the problems considered 
include that of finding exact representations of the 
p.d.f.'s for IE] in various space groups as well as for 
joint p.d.f.'s for E from which exact Y~I and ~2 
relationships can be recovered. In the present two 
papers we present some analogous results for the 
p.d.f, of the three-phase invariant q~ relevant to the 
solution of the phase problem in non-centrosym- 
metric structures. As in the above studies we shall 
assume that the primitive random variables of the 
problem are the atomic coordinates which, in the 
space group P1, vary independently and uniformly 
over the (0, 1) range. 
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A p.d.f, for the n-phase invariant has been derived 
in closed form by Castleden (1987). However, no 
numerical computations accompanied his derivation 
and, indeed, even in the simple case of the three-phase 
invariant, straightforward evaluation of the Fourier- 
series representation of the c.p.d.f, presents formi- 
dable numerical problems. In this first paper of this 
series we outline a derivation of an exact Fourier 
representation of the c.p.d.f, of • given values of 
IEh[, ]Ekl and IE_h_kl, for space group P1. We also 
show that Cochran's approximation to the p.d.f, fol- 
lows directly from the form of the characteristic func- 
tion corresponding to the c.p.d.f, of O. We then briefly 
discuss some of the symmetrization techniques 
required for reducing the numerical evaluation of the 
exact c.p.d.f, to manageable form, and present some 
detailed illustrations thereof in Appendix A. In 
the accompanying paper we present some results 
of specific numerical calculations, showing that 
approximations based on the central limit theorem 
underestimate the probabilities of phase determina- 
tion. These conclusions are consistent with those 
found earlier for methods based on Y.~ and Y.2 relation- 
ships for P1 (Shmueli & Weiss, 1985, 1986). 

Derivation 

The first step of our derivation is the construction of 
a joint probability density function (j.p.d.f.) of the 
real and imaginary parts of the three structure factors 
related to O. Let these structure factors be written as 
Eh = A1 + iB1, Ek = A2 + iB2 and E_h_k = A3 + iB3. 
Observe that all the A's and B's can only differ from 
zero in the range ( - l / a ,  l / a ) ,  where 1/a is the 
maximum value of lE I. We may therefore express the 
required j.p.d.f, as the sixfold Fourier series 

p(E)=K~C..exp[-rriaY.I, k = l  (U2k-lAkq-U2kBk)] ' (2) 

where E r = (A1, B~, A2, B2, A3, B3) , K is a normaliz- 
ation constant, u T = (ul, u2, u3, u4, us, u6) is the vector 
of summation indices and C,, is a Fourier coefficient 
(see Example below). The following abbreviations 
will be employed: 

E, -- IE(h)I, g2--lE(k)[ ,  E3-----lg(-h-k)l, 

(P, = ~h, ~2 =- ~k and ~/)3 ~ ~D_h_k. 

We can therefore write Ai=Eicos ~oi and Bi= 
E~ sin ~%, which allows us to transform (2) to the form 

p(E) = K ~  C,, exp -~ia Ek(U2k-I COS ~k 
u 1 

+ UEk sin q~k)J (3) 

= K ~ C u e x p [ - - i ~  ~'2kCOS(~pk--Ak)] k = l  (4) 

where 

n~ = ~ E ~ ( u ~ _ ,  + u~)~/~ (5) 
and 

Ak = tan -1 (U2k/U2k-,). (6) 

The j.p.d.f. (4) depends on the individual moduli and 
phases of the three structure factors, and its depen- 
dence on the three-phase invariant can be established 
by replacing, for example, ~o3 by O-~o~-~o2. If we 
now integrate out ~o, and ~o2, the required c.p.d.f, is 
obtained. The required angular integrals can be evalu- 
ated numerically, but it is simpler to represent the 
exponential in terms of Bessel functions, by making 
use of the relation 

co  

exp( ixcos /3 )=  ~ ikJk(X) exp(ixfl) (7) 
k = - o e  

(e.g. Gradshteyn & Ryzhik, 1980). The required 
integral can therefore be written as 

I dtp, I d~o2 exp - i  ~k COS(~k--Ak) 
0 0 1 

= E ~. ~ iP+q+'Jp(-J~,)Jq(-J~2)J~(-a3) 
p q r 

x exp [i(rO-pAl - qA2- rA3)] 
2~- 2~r 

× ~ ~ exp{i[(p-r)~ol+(q-r)tp2]}dtpld~02. 
0 0 

(8) 

The angular integral in the last line vanishes unless 
both p = r  and q = r .  Hence, if we observe that 
J.(-x)  = (-1)"J.(x) and omit a factor of 4~ 2, the 
right-hand side of (8) simplifies to 

zu(o)= Z i" Jp(nk) exp[ip(O-a)], (9) 
p =  - c o  1 

where A=A~+A2+A3. The general form of the 
c.p.d.f, of the three-phase invariant is therefore given 
by 

p(OIE,,E2, E3)=K'~,, CuZ.,(O), (10) 
u 

where K '  is a normalization constant, Z.,(O) is 
defined by (5), (6) and (9), and the Fourier coefficient 
C., is to be evaluated for the (crystallographic and/or  
non-crystallographic) symmetry under consideration. 
Straightforward integration of (10) over • shows that 
the (real) normalization constant is given by { ]/-I 

K ' =  27r~e CuGo , (11) 

where Go is given by (A.4). 

Example: space group P1 

The c.p.d.f. (10) depends on the space-group sym- 
metry via the Fourier coefficient C.. and we proceed 
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to show this dependence for the simplest non- 
centrosymmetric space group P1. Since the Fourier 
coefficient is just the value of the characteristic 
function at a point depending in a certain way on the 
summation indices (e.g. Shmueli & Weiss, 1985), the 
general expression for this coefficient is given by 

Cu= exp i (W2k-IAk+W2kBk) , (12) 
1 

where tom = 7raum. The expressions for A k and Bk, 
for the space group P1, are given by 

N N 

Ak = Z nj COS {gjk and Bk = Z nj sin Ojk, (13) 
j = l  j = l  

where 

nj=fj I f~)  " Z j  , Zk )  (14) 

is the normalized scattering factor of the j th atom, fj 
being its conventional scattering factor, and [~)jk = 
2"n'hk. rj, here h i - h ,  h2-=k and h a = - h - k .  The 
atomic number approximation in (14) is exact for the 
equal-atom case, and can still be conveniently 
employed for moderate atomic heterogeneities. If we 
make use of (13) and of the assumption that the 
atomic contributions are independent, (12) can be 
rearranged to read 

"( ]) C , =  I-[ exp i AjkCOS(O)jk--Ak) , (15) 
j=1 k = l  

where 

Ajk = "n'ani( u2k-1 + U2k) '/2 (16) 

and Ak is given by (6). The atomic average in (15) 
can be evaluated analogously to the integration of 
the phase factor outlined earlier. The exponential is 
a product of three terms of the form exp (ix cos/3), 
and each of these can be replaced by a series of Bessel 
functions (7). It is further observed that O j 3  = 

-Oi l -Oj2 .  Some straightforward algebra then leads 
to 

N 

C.(A) = 1-I Cud(A), (17) 
j = l  

where 

C .d (A)=  E iaq Jq(Ajk) exp(- iqA) ,  (18) 
q = - o o  k = l  

where A =A~+A2+A3 and Ak = tan  -~ (U2k/U2k-l). 
We point out that our expression for the charac- 

teristic function is analogous to that obtained by 
Peschar & Schenk (1986), except that the latter 
authors confine their derivation to the equal-atom 
case and the present equation (18) is applicable to 
any atomic composition. Another difference between 
the treatment of Peschar & Schenk and ours is that 

the latter authors derive approximations to the c.p.d.f. 
of q~ by evaluating a sixfold Fourier integral trans- 
form of a suitably expanded and truncated charac- 
teristic function, while our starting point is a sixfoId 
Fourier series. The coefficients of this series are given 
in terms of the exact rather than approximate charac- 
teristic function and the series is then evaluated 
numerically (Shmueli, Rabinovich & Weiss, 1989). 
Some practical aspects of bringing this rather formi- 
dable summation to manageable form are considered 
in the next section. 

Reduction of the exact result to Cochran's (1955) 
approximation 

Approximate results for the various p.d.f's in struc- 
ture-factor statistics, in particular those based on the 
central limit theorem, can be obtained by retaining 
only the terms of lowest order in the expansion for 
the appropriate characteristic function and by per- 
forming the required Fourier inversion (e.g. Shmueli 
& Weiss, 1985). It should therefore be possible to 
reduce our exact expression for the c.p.d.f, of the 
three-phase invariant to the well known Cochran's 
(1955) approximation to this c.p.d.f. Let us consider 
the Fourier inversion integral 

oo 

P(E)=[1/(E¢r)  6] ~ . - - ~  C(to) exp(-io~.E)d60~, 
- o o  - o o  

(19) 

and approximate to C(o~) by keeping only the lowest- 
order terms of its real and imaginary parts. In the 
present case these can be found from (18) or, more 
conveniently, from the terms Kod and K~,j in (A.8). 
The lowest-order terms in the expression for the 
atomic contribution to the characteristic function are 

CJ( ' )  ~'~-" k - - 1  l~I Jo(njFk)-2i [~Ik=l J,(njFk)] cos A, (20) 

where Fk = (tO2k-i + W~k) 1/2. When the approxima- 
tions Jo(x)~-1-x2/4 and J l ( x ) = x / 2  are made, one 
finds from (20) the further approximation 

2 2 2 Cj(to)" 1 - ( n J 4 ) ( F ~  + FEd- F~) 

-i(n}/4)F1F2F3cosLl. (21) 

Since 

cos A = cos ( Al + A2 + A3) = V(to)/ FlFEF3, (22) 

where 

V(~) = ~o~o3o~5 - o~2o~4o~5 - co2~o3o~6- o~oJ4o~6, (23) 

the atomic contribution to the characteristic function 
can be approximated by 

Cj= 1-( to . to /4)nE- i[V( to) /4]n  3. (24) 

If we make use of the approximation 1 - x --- exp ( -x ) ,  
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we find 

C(to)--'exp [- to. to/4-i[V(to)/4] ~ n3], (25) 
j= l  

which agrees with the expression given by Giacovazzo 
(1980). One can then follow Giacovazzo's (1980) 
derivation to find that to the order given 

P(@IE~E2E3)"-[2rrlo(K)] -t exp(K cos @), (26) 

where 

with 

= 2 n E t E 2 E  3 
j l 

= 2o-3or23/2El E 2 E 3 ,  (27) 

N 

j= l  

Equation (26) reduces to the Cochran (1955) result 
for the equal-atom case, i.e. for n~ = . . .  = nN = N -~/2. 
Higher-order corrections may be obtained by con- 
sidering further terms in (A.6) and (A.7). 

Simplification of the expressions and some 
programming considerations 

Numerical computation of the expression for the 
c.p.d.f. (10) presents considerable practical difficul- 
ties because of prohibitive computing times. 
However, the computing time can be reduced by 
several orders of magnitude by making use of the 
symmetries inherent in the summations. In what 
follows we briefly survey several such possible 
simplifications. 

(1) It is convenient to decompose (10) into the 
different kinds of summations involving five, four, 
three, two, one and no zero indices respectively. This 
leads to more efficient and more readily debugged 
programs. 

(2) The arguments of the Bessel functions appear- 
ing in the Fourier coefficient C. and in the phase 
factor Z, of our c.p.d.f, each depend on the sum of 
the squares of two summation indices of the sixfold 
Fourier series. This indicates that the summation can 
be restricted to non-negative indices only, provided 
the phase factors [e.g. (6)] are appropriately modified. 

(3) The Fourier summation indices appear in pairs 
[(1, 2), (3, 4) and (5, 6)] both in the arguments of the 
Bessel functions and in the phase factors [e.g. (6)]. 
If, for example, ul and u2 both run over all the positive 
integers, we may try to reduce the corresponding pair 
of summations to the range ul > u2. This is straightfor- 
ward in the case of the Bessel functions, but requires 
some bookkeeping in the case of the phases. The 
resulting relations allow one to restrict the general 
range of summation to u~ >- u2, u3-  u4 and us-> u6. 

(4) The 'intra-pair' symmetry outlined in point 3 
usually leads to several kinds of phase shifts, as shown 
in Appendix A. However, an examination of the 
trigonometric functions of these seemingly different 
phases often reduces the number of different terms 
to be summed. 

(5) As pointed out above, the sixfold summation 
essentially reduces to summations over three pairs of 
indices. These pairs can often be interchanged, sub- 
ject to a proper symmetrization of the Bessel function 
products that depend on (different) magnitudes of 
normalized structure factors, while leaving the value 
of the sixfold summation unchanged. This leads to 
another significant reduction of the computational 
effort. 

(6) Major simplifications, confined to the pro- 
gramming of the computations, are brought about by 
avoiding repetitive calculations. For example, the 
required Bessel functions need only be computed 
once outside the nested summation loop. Such a 
simplification may call for rather large arrays, poss- 
ibly requiring a computer with virtual memory. Cast- 
ing the expressions into vectorizable form may result 
in some savings in time but this appears to be much 
less important than the reduction of the computing 
time resulting from the symmetries outlined above. 

The above outlined simplifications appear to be a 
necessary condition for carrying out numerical calcu- 
lations of the exact c.p.d.f, of the three-phase 
invariant. They thus deserve some detailed illustra- 
tions, which have been postponed to Appendix A. 

Concluding remarks 

We have derived an exact representation of the c.p.d.f. 
of a three-phase invariant in terms of a Fourier series 
for the space group P1. However, the derivation can 
be generalized to derive representations of c.p.d.f's 
of higher invariants for higher symmetries. While the 
resulting formulation is fairly concise, its numerical 
implementation poses serious difficulties, and 
becomes possible only when the symmetry inherent 
in the summation is properly exploited. In fact, much 
of the present work has been concerned with sim- 
plification of the expressions to be evaluated and the 
computations, the results of which are presented and 
discussed in the second paper of this series (Shmueli, 
Rabinovich & Weiss, 1989), have thereby been 
reduced to manageable proportions. 

Analogous Fourier representations of c.p.d.f.'s of 
quartet, quintet etc. invariants can be readily con- 
structed but we do not deal with them here since the 
relevant computational difficulties still appear to be 
too serious. 

This research was supported in part by grant No. 
84-00076 from the United States-Israel Binational 
Science Foundation (BSF), Jerusalem, Israel. All the 
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computations related to this paper were carried out 
at the Tel Aviv University Computation Center on a 
Cyber 180-990 computer. 

APPENDIX A 

We present here an example of simplifying the 
summations involved in the computation of the 
c.p.d.f, of the three-phase invariant and try to 
illustrate most of the programming considerations 
outlined in the paper and implemented in actual 
computations. We first require a decomposition of 
the complex quantities appearing in our expressions 
into their real and imaginary parts. 

The phase factor (9) of the c.p.d.f, depends on the 
three-phase invariant • and can be decomposed into 
its real and imaginary parts as 

Z . ( ~ ) = X . ( ~ ) + i Y , , ( ~ ) ,  (A.1) 

where 
oo 

X,,(@)=Go+2 Z (-1)PG2p(qg)cos[2p(@-A)], 
p=l (A.2) 

and 

Y , ( ~ ) = - 2  ~ (-1)PG2p_~(~)cos[(2p-1)(~-A)],  
p = l  

(A.3) 

with 

3 

G m  = I-I  Jm(~'2k), ( a . 4 )  
k = l  

where ~"~k is given by equation (5). 
Similarly, the j th component of the characteristic 

function, given by (18), can be decomposed into its 
real and imaginary parts as 

C.j  = g , j  + iI..,j, (A.5) 

where 

Ru,j = Ko,j+2 ~ (-1)qK2q, j cos (2qA) (A.6) 
q = l  

and 
oo 

Iuj =2  E (-1)qK2q-,,jcos[(2q-1) A] 
q = l  

(A.7) 

3 
Kr.j = 1-I Jm[Trcenj(u2k-,+U2k)'/2]. (A.8) 

k = l  

with 

Summation over positive indices only 

Suppose we restrict our attention to non-zero 
summation indices. There are altogether 2 6-- 64 sign 
combinations for any given sextet of the summation 

indices. Hence, for any given six magnitudes of the 
indices Uk in (10) there are 64 terms in that summation 
that depend on the given set of index magnitudes but 
with all their possible combinations of signs. The 
dependence of the c.p.d.f, on the summation indices 
is restricted to (i) the arguments of the Bessel func- 
tions, which are of the form K(U2m'~-U2m_I)I/2 and 
depend on magnitudes only, and (ii) the phase factors 
A = A~ + A2+ A3, where Ak is given in (6). Clearly, 
any Ak changes its sign when only one of the u's 
changes sign, and does not change its sign when either 
both or none of the u's change sign. There are there- 
fore eight sign combinations of the u's leaving A 
unchanged, and eight possible forms of the phase A, 

a, = ±l,a,I ± IA21 ± I%1, (A.9) 

where the values 0, 1, 2, 3, 4, 5, 6 and 7 of the index 
i in (A.9) correspond to the sign combinations: + + + ,  
- + + ,  + - + ,  + + - ,  + - - ,  t , - - +  and 
- - - ,  respectively. The simplification that immedi- 
ately suggests itself is to group the products CuZ.., 
internally, for the above eight values of the phase, 
and carry out the sixfold summation on positive 
values of the indices only. The c.p.d.f. (10) thus 
becomes 

7 

p ( ~ I E , ,  E2, E3) oc Z Y. Cu(a~)z , . (~ ,as) .  (A.10) 
u > 0  s = 0  

Further simplifications require a consideration of 
the dependence of Cu and Z. on the phase A, and 
the symmetry of the phases as in (A.9). The eight 
forms of the phase in (A.9) split in two groups of 
four, which are related by a change of the sign of A. 
It is seen from (A.6) and (A.7) that C.. is independent 
of the sign of A, but (A.2) and (A.3) show that Zu 
changes its value when A changes sign. Equation 
(A.10) can therefore be rewritten as 

3 

P(~IE,,Eg, E3) °c E E C,.(Ss) 
u > 0  s = 0  

x [ Z u ( ~ ,  a~) + z . ( ¢ , ,  - a, ) ] .  

(A.11) 
The sum in the square brackets in (A.I 1) reduces to 

Z.(¢', a)+ z . ( ¢ , , - a ) - 2  Wu(~, a) 

= 2[ u,,(~, 6)+ iv..(~, 6)], 

(A.12) 
where 

U.(~, a) = Go+ 2 ~ (-1)PG2p cos (2pq~) cos (2p6) 

p=l (A.13) 
and 

V,,(q~, 6)= -2  ~ (-1)PG2p_, 
p=l  

x cos [ (2p- 1)4~] cos [ (2p- 1)a] (A.14) 
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and (A.11) further reduces to 

3 

p(4lE,,E2, E3)oc Y'. Y. C,,(6~)W,,(4,6~). (A.15) 
u > O  s = 0  

Another consequence of these considerations is the 
(expected) symmetry of the c.p.d.f, with respect to a 
change of the sign of 4. Simplifications similar to 
those of the last paragraph follow readily for the 
summations having one or more indices equal to zero. 
Note that we omitted here explicit reference to the 
normalization constant, which can be computed 
from (11) at any stage of the symmetrization/sim- 
plification. 

Intra-pair symmetry and other simplifications 

As pointed out above, the characteristic function 
C,, and the modified and integrated phase factor 
W.(4)  of the Fourier c.p.d.f, depend on the sum- 
mation indices via the arguments of the Bessel func- 
tions, and the phases Ak defined in (6). For each pair 
of indices ( U 2 k _ l ,  U2k ) we have either U2k_ ! = U2k , with 
A k = ' r r / 4  , o r  U2k_l~;~U2k . If we consider all the 
positive indices, as outlined in the previous section, 
we encounter, for any pair of unequal indices 
( l / 2 k - 1 ,  U 2 k ) ,  the pair of indices (U2k, U2k-~). The 
phases of these two pairs are obviously related by 

A~=tan  -1 (U2k-1/U2R) 

=cot  -1 (U2k/UEk_~)=(1r/2)--Ak. (A.16) 

We can therefore confine the summations on u~ and 
//2 to Ul > u2, and treat in a similar manner the other 
pairs of summations on (u3, u4) and (us, u6). 

An example of this intra-pair symmetry is shown 
below by considering together the following configur- 
ations of the summation indices: (1) Ul # u2, u3 = u4 
and u5 = u 6 ,  (ii) ul = u2, U3 "7~ U4 and u5 = u 6 ,  and 
(iii) Ul = u2, u3 -- u4 and u5 # u6, where all the indices 
are positive. The appropriate version of the 
summation in (A.15) is 

co oo 3 

Z E y. c.,.~.,.,(6,) w-..2.,.,(4, 6,), 
UI#U2=I U3,u5=l $=0 (A17)'--.--" 

where C.,,,=.~., [an abbreviation for C.,.=.~.,.,.,] is 
defined as in (17), and W~,u=,,,,,s(4) is defined as in 
(A.2)-(A.4) except that the quantity G,, that appears 
in those equations is to be replaced by 

3 m m m rti tlrl m m m m 
= Bl12B233B355+ B212B333BI55-{- B312BI33B255, 

(A.18) 
where 

= ~ &[ ~ra~,~(u~ + ub ' lq  
B*~kt t&(~aE~ukV~) 

i f k # l  
(A.19) 

if k = l .  

Equations (A.18) and (A.19) account for the three 
index configurations, while only the first one appears 

in the summation. The fact that there are two pairs 
of equal indices introduces into the phase a constant 
term. 

We now have to consider the four phases, 6s, for 
the cases (i) Ul > u2, and (ii) u~ < u2, and will take (i) 
as the reference case. We thereby obtain eight phases, 
only four of which are different (up to a change of 
the sign): (i) A~-Tr, (ii) A~-7r/2,  (iii) Ai and (iv) 
At + 7r/2, with multiplicities of 1, 3, 3 and 1, respec- 
tively. If we group internally the expressions that 
depend on these phases, the summation in (A.17) 
reduces to 

Z [C,,,,,~,,,,,~(A,-~.+~s/2) 
UI>U2=I U3,US=I $ = 0  

x W'u, u2-~,5(4, A1 - ~'+ rrs/2)]. (A.20) 

The number of different types of products C. W ' ( 4 )  
in (A.20) can be further reduced from four to two by 
evaluating the functions cos (2n6s) and cos [ ( 2 n -  
1)6s] for the different values of the phases. One sees 
that if the phase Al in C.(A1)W'(4 ,  A~) is replaced 
by A~ - 7r, the product transforms to its complex con- 
jugate. If A~ in C.(A~)W'(4,  A~) is replaced by A:+ 
7r/2 anothertype of product is obtained, which we 
denote by C . (AI )W' (4 ,  A~) where, in the space 
group P1, 

N 

C-'.(A) = I-I C.,j, (A.21) 
j = t  

where 

g~e[C,, . j(A)]=Koj+2 ~ K2q.jCOS(2qA), (A.22) 
q = l  

oo 

5~n[C. , j (A)]=2 Y. K 2 q _ , j c o s [ ( 2 q - 1 ) k ] ,  (A.23) 
q = l  

oo 

~ [ W ' ( 4 ,  A ) ] = G ~ + 2  Y. G3p cos (2p4) cos (2pZl), 

p=l (A.24) 

and 

3r~[17¢'(4,a)] = - 2  ~ G3p_~ c o s [ ( 2 p - 1 ) 4 ]  
p = l  

x cos [ ( 2 p -  1)~], (A.25) 

where Kmj is defined by (A.48) and GS~ is given by 
(A.18). When, finally, the phase A~ in 
C,,(A~)W'(4, A~) is replaced by Al-Tr /2 ,  the 
product t ransforms to the complex conjugate of 
C,,(A~) W ' ( 4 ,  A~). The (relevant) real part of the inner 
summation in (A.20) thus becomes 

4~,e{[ C,,(A,) W',,( 4, A,)] + [ C',,(A,) I~"( 4,  A,)]}. 

(A.26) 

There are still eight products in the summation but 
only two of them differ. 



URI S H M U E L I ,  SAVELY R A B I N O V I C H  A N D  G E O R G E  H. WEISS 367 

Inter-pair symmetry 

Consider  the summat ion  over six non-zero indices,  
where none of  (ul, u2), (u3, u4) and (us, u6) is a pair  
of  equal  numbers .  This case is the most time- 
consuming part of  the calculation. As expla ined  
above, the summat ion  can be restricted to positive 
indices only, where u~ > u2, u3 > u4 and u5 > u6. Sup- 
pose the sixfold summat ion  converges when the upper  
l imit  of  a single summat ion  is some number ,  say M, 
and each of  the indices Ul, u3 and u5 ranges from 1 
to M. It is easily verified that when the three I EI 
values are equal,  the above index configurat ion leads 
to some redundan t  calculat ions the result of  which 
is invar iant  under  a permuta t ion  of the pairs of  
indices. Accordingly,  in order to s implify the calcula- 
tion it is convenient  to define new indices as 

l/k=½(U2k_l--1)U2k_i+U2k , k = 1 , 2 , 3 .  (A.27) 

It is then sufficient to let Ul range from 1 to M, u 3 
from 1 to ui and  us from 1 to u 3. We further introduce 
mult ipl ic i ty  factors depend ing  on whether  vl, v2, v3 
are all different, Vl = v2 ~ v3, z,a # v2 = v3 or Vl = v2 = 
%. The E-dependen t  Bessel functions are stored out- 
side the summat ion  loop in arrays of  the form 

Dj(p, Vk)= Jp[TraEj(U2k_i + U2k)l/2] (A.28) 

and the triple products such as those in (A.4) can be 
computed  as 

T123 = D,(p ,  vI)D2(p, v2)D3(p, v3), (A.29) 

where the subscripts on T pertain to the subscripts 
on the I EI values. In the general  case, i.e. for unequa l  
]E['s, we can still retain the restricted ranges of  the 
summat ions  by symmetr iz ing TI23. This is s imply  
achieved by comput ing  the expression 

1(T123-1- T312 q-- T231 q- T132 q- T321-1- T213). (A.30) 

Since only some of  the terms require such a sym- 
metrization, the comput ing  effort is thus again sig- 
nificantly reduced.  
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Abstract  

The condi t ional  probabi l i ty  density funct ion of  a 
three-phase invariant  is computed from exact 
expressions derived and  discussed in the first paper  
of  this series [Shmueli ,  Rabinovich  & Weiss (1989). 
Acta Cryst. A45, 361-367] and comparisons  are pre- 
sented of  these computat ions  with the approximate  
condit ional  density due to Cochran  [Acta Cryst. 

(1955), 8, 473-478]. Condi t iona l  variances computed  
from the exact and approximate  expressions are also 
compared.  The computat ions  are carried out for the 
space group P1. This is the first numerical  compar i son  
of  condi t ional  phase- invar iant  statistics evaluated 
from exact and  approximate  expressions.  The dis- 
crepancy between these two kinds of statistics appears  
to be negligible if  the E values involved are small  
and the n u m b e r  of atoms in the cell is modera te ly  
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